

National Marine Fisheries Service

U.S DEPARTMENT OF COMMERCE

AFSC PROCESSED REPORT 2005-02

Results of the Echo Integration-trawl Survey of Walleye Pollock (*Theragra chalcogramma*) on the U. S. and Russian Bering Sea Shelf in June and July 2004

February 2005

This report does not constitute a publication and is for information only. All data herein are to be considered provisional.

Notice to Users of this Document

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Results of the Echo Integration-trawl Survey of Walleye Pollock (*Theragra chalcogramma*) on the U.S. and Russian Bering Sea Shelf in June and July 2004

by

T. Honkalehto, D. McKelvey, and N. Williamson

Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way NE Seattle WA 98115

February 2005

INTRODUCTION

Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) conduct biennial summer surveys of Bering Sea walleye pollock (Theragra chalcogramma). This year (2004) was the first time since 1994 that permission was granted to survey in the Russian Exclusive Economic Zone (EEZ). Results presented here are from the echo integration-trawl (EIT) survey carried out between 5 June and 1 August 2004 on the U.S. and Russian Bering Sea shelf (near Cape Navarin) aboard the NOAA ship *Miller Freeman*. The primary objective of the survey was to collect echo integration and trawl data to estimate midwater pollock abundance and distribution. Secondary objectives were to test an experimental multiple-opening-closing codend using the Aleutian wing trawl (AWT-MOC) and to conduct net-selectivity trial experiments. Scientists from the National Marine Mammal Laboratory (NMML) were aboard to census marine mammals along the EIT survey track during Leg 1. Russian scientists from TINRO, Vladivostok, and VNIRO, Moscow, participated aboard the Miller Freeman. Originally, TINRO scientists planned to conduct an EIT survey in the Cape Navarin area with the Russian R/V TINRO, thus an intership calibration between the Miller Freeman and the TINRO was conducted to allow comparison of survey results. In late July, TINRO priorities changed and they did not conduct an EIT survey.

This report summarizes observed pollock distribution, abundance, size composition and maturity information. It provides pollock biomass estimates, and summarizes acoustic system calibration and oceanographic results. Secondary projects are still in experimental stages and are not discussed.

METHODS

Itinerary

Leg 1

4 Jun Embark scientists in Kodiak, AK

5-6 Jun Depart Kodiak 1500; calibration of acoustic system in Three Saints Bay, Kodiak Island, AK.

	0					
10 Jun-2 Jul	Echo integration-trawl survey of the Bering Sea shelf through transect 17.					
2-3 Jul	Calibration of acoustic systems in Captains Bay, Unalaska Island, AK.					
4-5 Jul	nport Dutch Harbor, AK.					
	Leg 2					
5 Jul	Depart Dutch Harbor 2000; transit to begin transect 18.					
6-27 Jul	Echo integration-trawl survey of the Bering Sea shelf through the southern section					
	of transect 30; intership-calibration of scientific acoustic systems with the Russian					
	R/V TINRO 25-26 July.					
27-29 Jul	Transit to Unalaska Island.					
29 Jul	Calibration of acoustic systems in Captains Bay. Debark scientists					
	in Dutch Harbor.					
30-31 Jul	Transit to Kodiak.					
1 Aug	End of cruise.					

Acoustic Equipment

7-9 Jun

Transit to Bering Sea.

Acoustic data were collected with Simrad EK500¹ ROMS 5.30 (Bodholt et al. 1989, Bodholt and Solli 1992) and ER60 v. 2.0.0 (Simrad 2003) quantitative echo-sounding systems on the NOAA ship *Miller Freeman*, a 66-m stern trawler equipped for fisheries and oceanographic research. Four split-beam transducers (18 kHz, 38 kHz, 120 kHz and 200 kHz) were mounted on the bottom of the vessel's centerboard extending 9 m below the water surface. Acoustic data were collected using the EK500 echo sounder operating at 38 kHz and the ER60 echo sounder operating at 18 kHz, 120 kHz and 200 kHz frequencies. Acoustic system settings used during the collection were based on results from acoustic system calibrations and on experience from prior surveys (Table 1). Acoustic data were logged with SonarData Echolog v. 3.10.16.0 software. Results presented here are based on the EK500 38 kHz data.

¹ Reference to trade names or commercial firms does not constitute U.S. Government endorsement.

Trawl Gear and Oceanographic Equipment

Midwater and near-bottom echosign were sampled using an Aleutian Wing 30/26 Trawl (AWT, midwater trawl) fitted with a 32 mm (1.25 in) codend liner. For field-testing purposes, midwater echosign was also sampled using the AWT with a multiple opening-closing (MOC) codend. The AWT-MOC was designed so that two layers can be sampled discretely with catches retained in separate codends. During Leg 2, a net selectivity experiment was conducted using the AWT equipped with removable gillnet panels. On or near bottom echosign was sampled with an 83/112 bottom trawl without roller gear and a 32-mm codend liner. A Methot and a Marinovich trawl were used to target age-0 pollock and macrozooplankton. For the AWT, bottom trawl, and Marinovich trawl, vertical net opening and depth were monitored with either a WESMAR third wire netsounder system or a Furuno acoustic link netsounder system attached to the headrope. For AWT hauls, net opening was 11 to 23 m and averaged 19 m. For bottom trawl hauls, net opening was 2 to 3 m. The Methot trawl depth was monitored using a Scanmar depth sensor attached to the top of the frame. All nets except for the Methot were fished with 5 m² Fishbuster trawl doors; a restrictor was used when fishing with the Marinovich trawl. Additional trawl gear details are described in Honkalehto et al. (2002).

Physical oceanographic data collected during the cruise included temperature/depth profiles obtained with a Sea-Bird Electronics temperature-depth probe (SBE-39) attached to the trawl headrope, and conductivity-temperature-depth (CTD) profiles collected with a Sea-Bird CTD system at calibration sites and other locations. Sea surface temperature, salinity, and other environmental data were collected continuously using the *Miller Freeman's* Scientific Computing System (SCS).

Survey Design

The planned survey design including the Russian EEZ consisted of 31 north-south transects spaced 20 nautical miles (nmi) apart over the Bering Sea shelf from Port Moller, Alaska, to Cape Navarin, Russia. However, due to the ship's mechanical difficulties, only the southern portion of

transect 30 was completed (Fig. 1). Echo integration and trawl data were collected during daylight hours (typically between 0600 and 2400, depending on calendar date and location). Nighttime operations included additional trawling, target strength data collection, field-testing of the AWT-MOC, conducting net selectivity experiments, and acoustic system testing. Pollock were sampled to determine sex, fork length, body weight, age and maturity. For age determinations, pollock otoliths were collected and stored in individually marked vials containing a 50% ethanol-water solution. Maturity was determined by visual inspection and fish were categorized as immature, developing, pre-spawning, spawning, or post-spawning. Trawl station and biological data were recorded using a Fisheries Scientific Computer System (FSCS) designed and developed by NOAA's Office of Marine and Aviation Operations to digitally collect data aboard research vessels.

Standard sphere acoustic system calibrations (Foote et al. 1987) were made prior to the start of the Bering Sea shelf survey at the end of Leg 1, and at the end of Leg 2 to measure acoustic system performance. A tungsten carbide sphere (38.1 mm diameter) and a copper sphere (64 mm diameter) were suspended below the centerboard-mounted transducers. The tungsten carbide sphere was used to calibrate the 38, 120 and 200 kHz systems. The copper sphere was used to calibrate the 18 kHz system. After each sphere was centered on the acoustic axis, split beam target strength and echo integration data were collected. Transducer beam characteristics were modeled by moving each sphere through a grid of angular coordinates and collecting target strength data using Simrad EKLOBES software.

Data Analysis

Acoustic data were collected between 12 m from the surface (3 m below the centerboardmounted transducer) and 0.5 m off the bottom. The depth limit of data collection was 500 m. Scientists scrutinized the 38 kHz data using Sonardata Echoview software (v. 3.10.129). Data were partitioned into pollock, non-pollock fish, rockfish, and an undifferentiated mixture thought to be primarily jellyfish, other macrozooplankton, and fish, and stored in a relational database. Pollock backscatter was scaled to biomass by using pollock biological data from 91 trawl hauls. Length data were combined into 26 length strata based on geographic proximity, similarity of length composition, and echosign. Mean target strength (dB) was estimated for each stratum by using the pollock target strength (TS) to length relationship (TS = $20 \log FL - 66$, where FL is fork length (cm); Traynor 1996). Two average weight-at-length relationships were used, one for pollock east of $170^{\circ}W$ and one for pollock west of $170^{\circ}W$. Biomass for each stratum was then estimated as:

Biomass =
$$\frac{\overline{s}_A \times \frac{W}{1000} \times A}{4 \times \pi \times 10^{\overline{TS}/10}}$$
 metric tons (t),

where \overline{s}_A (mean scattering area, m²/nmi², also known as nautical area scattering coefficient, NASC; MacLennan et al. 2002) is return acoustic signal from pollock in the water column, A is survey area (nmi²), \overline{TS} is mean target strength (dB) of pollock, and \overline{W} is mean weight of individual fish (kg). Estimated pollock distribution and abundance were then summarized into three areas: U.S.-east of 170°W, U.S.-west of 170°W, and Russia-Cape Navarin. Age data for the 2004 EIT survey were not available when this analysis was completed; age composition was estimated from the observed length data and the 2004 Bering Sea bottom trawl survey (BTS) age data.

Relative estimation errors associated with spatial structure observed in the acoustic data were derived using a one-dimensional (1D) geostatistical method (Petitgas 1993, Williamson and Traynor 1996). Relative estimation error is defined as the ratio of the square root of the estimation variance to the estimate of acoustic abundance--the average transect backscatter multiplied by transect area. Geostatistical methods were used for computation of error because they account for the observed spatial structure. These errors quantify only transect sampling variability. Other sources of error (e.g., target strength, trawl sampling, error associated with ageing) are not included.

RESULTS

Calibration

Three acoustic system calibrations were conducted during the summer 2004 field season (Table 1). No significant differences in gain parameters or transducer beam characteristics were observed for the Simrad EK500 38 kHz system.

Oceanographic Conditions

With a few exceptions, sea surface temperatures warmed as the survey progressed towards the northwest. In June (transects 1-17), the coolest surface waters (< 7°C) were observed at the north and south ends of transects 1 through 3, near Unimak Pass, and at the north ends of transects 12 through 17. The warmest surface waters (> 8°C) were observed in the middle of transects 8 and 10, and south of the Pribilof Islands at about 56°N lat. (Fig. 2a). During July, (transects 18-30) the coolest surface waters (< 8.0°C) were observed southeast of St. Matthew Island, and the warmest surface waters (> 11°C) were observed along transects 29 and 30 south of Cape Navarin.

The average temperatures at 60 m (representing the water column below the thermocline; Fig. 2b) showed that water cooled gradually from southeast to northwest and offshore to inshore, from 6°C near Unimak Pass to 0°C in a small region northwest of St. Matthew Island. Below-thermocline water temperatures in the Cape Navarin area ranged between 1° and 3°C.

Biological Sampling

Biological data and specimens were collected from 154 trawl hauls (Table 2, Fig. 1), which included: 117 with the AWT midwater trawl, 20 with a bottom trawl, 9 with a Marinovich trawl, and 8 with a Methot trawl. Walleye pollock was the most abundant and jellyfish (Cnidaria) was the second most abundant taxon captured by weight in both midwater and bottom trawl hauls (Tables 3 and 4). Jellyfish were the most abundant species group by weight for both Marinovich

and Methot trawls (Tables 5 and 6). Numerically, age-0 pollock dominated Marinovich catches and euphausiids dominated Methot catches. During the cruise, 35,827 pollock lengths were measured and 3,712 pairs of otoliths were collected from pollock captured in trawl hauls (Table 7). Pollock 38 to 50 cm FL that were caught in trawl hauls east of 170°W averaged 8% heavier than those caught west of 170°W (Fig. 3). Less than 1% of the pollock larger than 29 cm FL were actively spawning. Most pollock were either in the developing or post-spawning maturity stage (Fig. 4).

Distribution and Abundance

Pollock were typically detected either as "salt and pepper" echosign (regularly distributed small dots throughout the middle to near bottom water column), or as midwater layers and schools. Occasionally they appeared as a near bottom "carpet". On the first three transects, few pollock were observed (Fig. 5). Between transects 3 and 6, most pollock were between 50 m in the water column and the bottom, along with a heavy layer of jellyfish-macrozooplankton-fish mixture (non-pollock species, Fig. 6) that sometimes filled the entire water column. Between transects 7 and 10, dense pollock aggregations were observed north of Unimak and Unalaska Islands, with some jellyfish-macrozooplankton-fish mixture present. From Unalaska Island to about 60 nmi west of St. Matthew (transects 10 through 22), pollock was the primary echosign detected in the southern half of the transect 22, pollock was the primary echosign (Fig. 7) and the jellyfish-macrozooplankton-fish layers were reduced but still present in the upper water column. In the U.S. EEZ, most pollock were observed west and south of St. Matthew Island (transects 20-26). In the Cape Navarin area, most pollock were observed near the north ends of transects 26 and 29.

Estimated abundance between 12 m from the surface and 3 m off the bottom in the U.S. EEZ was 6.83 billion pollock weighing 3.31 million t (Tables 8 and 9). The predominant lengths were 39 to 41 cm FL (Fig. 8a). About 30.7% of the estimated biomass was east of 170°W; of that, 15.1%

was found inside the Steller sea lion Conservation Area (SCA). East of 170°W, the predominant length mode was 44 cm FL and relatively few juveniles were observed (Fig. 8b). Pollock abundance and size composition inside and outside the SCA were nearly identical (Fig. 8c). West of 170°W to the U.S.-Russia border, the predominant length mode was 39 cm FL. Age-1 juveniles (< 20 cm FL) were rarely observed, however, a few were caught at night in experimental AWT-MOC trawl hauls between transects 20 and 21.

Estimated numbers at age from the 2002 EIT survey showed that 2 and 3 year olds, the 2000 and 1999 year classes, were most numerous, with the 1998, 1996 and 1992 year classes also well-represented (Table 10). In 2004, as age information was not yet available from the EIT survey, preliminary numbers at age were estimated using an age-length key from the 2004 BTS data. The results suggest that 4-year old pollock dominated the population observed by the EIT survey. Five year olds were next most numerous age group. Mean length at age for pollock sampled during the 2002 survey appeared to be slightly higher than that from either 1999 or 2000 (Fig. 9). Mean length at age for pollock sampled during the 2004 EIT survey also appeared to be higher than the other three survey years, especially for pollock age 6 and older. However, these 2004 results were preliminary and will be reanalyzed with EIT survey ages when they are available.

In the Russian EEZ, between Cape Navarin and the U.S.-Russia border, the estimated abundance between near surface and 0.5 m off bottom was 1.55 billion pollock weighing 0.40 million t (Table 11). (For comparison, from near surface to 3 m off bottom the estimated abundance was 1.41 billion pollock weighing 0.36 million t). The Russia EEZ biomass made up about 9% of the total estimate for the combined U.S.-Russia area surveyed in 2004. The predominant length mode was 31 cm FL (Fig. 8b) and relatively few adult pollock larger than 40 cm FL were observed. Most 2-year-old pollock (~20 to 29 cm FL) encountered in Russia were at the north end of transects 26 through 29.

8

DISCUSSION

In 2004, midwater pollock biomass (near surface to 3 m off bottom) in the U.S. EEZ was slightly less than in 2002, but greater than in the previous five summer surveys starting in 1994 (Table 8). Together, pollock from the 2000, 1999 and 2001 year classes made up most of the population (Table 10). Four-year-old pollock (2000 year class) were estimated to number 2.9 billion and weigh 1.3 million t, about 42% and 40% of the total estimated numbers and biomass, respectively. Abundance results for juveniles from the current EIT survey showed that the estimate of age-1 pollock was the lowest since 1994. For age-2 pollock, the estimate was second lowest, above the 1996 estimate. EIT abundance estimates of age-0 pollock were not attempted because of both availability and trawl selectivity concerns. However, age-0 juveniles were frequently captured during the survey in Methot and Marinovich trawl hauls. Young-of-the-year catches from the 2004 Bering-Aleutian Salmon International Survey-Ocean Carrying Capacity (BASIS/OCC) cruise conducted between 11 August and 3 October also suggested that there might have been good recruitment from the 2004 year class².

For pollock ages 2 and 3, the relative year-class strength estimated from EIT surveys between 1982 and 2004 was compared with current stock assessment model estimates (Ianelli et al. 2004) (Fig.10). EIT estimates for each survey year were compared to the mean number of age 2 and 3 pollock across all survey years (1982 to 2004). The stock assessment (Model 1) estimates for age 2 and 3 pollock (from EIT survey years 1982 to 2004) were compared to the mean number of ages 2 and 3 across all modeled years (1964 to 2004). The EIT survey showed the same pattern of above- and below-average year classes as Model 1 estimates for 2 year olds (Figs. 10a,c). EIT survey estimates also showed the same pattern as Model 1 estimates for 3 year olds (Figs. 10b,d), with two exceptions. In 1988, the EIT survey estimated the 1985 year class to be above average, whereas the model estimated it as below average. In 1994, the EIT survey estimated a well-below average 1991 year class, and Model 1 estimated it to be only slightly below average.

² E. Farley, Auke Bay Laboratory, Juneau AK, pers. comm. November 2004.

Preliminary numbers of age 2 and 3 pollock from the 2004 EIT survey (Table 10), estimated using the 2004 BTS age data, suggested that the 2001 and 2002 year classes were below average (Figs.10a,b). This was consistent with the 2004 Model 1 estimates for those year classes. Agreement between EIT survey and Model 1 estimates for 2- and 3-year-old pollock suggests that the EIT survey alone provides a good indication of recruitment strength for these age groups. This is expected because 2-year-old pollock, and to a lesser degree, 3-year-old pollock, are more available to the EIT survey than to either the BTS or the commercial fishery.

Pollock distribution patterns in the northern edges of the U.S. EEZ across the U.S.-Russia Convention Line to Cape Navarin have varied since the AFSC's last EIT survey of Russian waters in 1994 (Figs. 11a-c). The percentage of pollock biomass inside the U.S. EEZ ranged from 85% in 1994 to 98% in 2002 (Table 11). In 2004, about 91% of the pollock were observed in the U.S. EEZ. The 2002 survey took place between 30 June and 19 July, the 2004 survey was between 16 and 27 July, and the 1994 survey was between 1 and 20 August. The early summer survey in 2002 observed the fewest pollock in the Russian EEZ, and the late summer survey in 1994 observed the most. Although these data might suggest that the surveys' sequential timing captured different stages of northward pollock migration from the U.S. EEZ into the Cape Navarin area, more information from and further collaboration with Russian scientists are required to better understand the summer distribution of cross-boundary pollock in the Bering Sea.

ACKNOWLEDGMENTS

The authors would like to thank the officers and crew of the NOAA ship *Miller Freeman* for their proficient field support. They would also like to thank Kresimir Williams for contributing his ArcView expertise to this document.

CITATIONS

- Bodholt, H., H. Nes, and H. Solli. 1989. A new echo sounder system. Proc. Instit. Acoust. 11(3):123-130.
- Bodholt, H., and H. Solli. 1992. Split beam techniques used in Simrad EK500 to measure target strength, p.16-31. *In* World Fisheries Congress, May 1992, Athens, Greece.
- Foote, K. G., H. P. Knudsen, G. Vestnes, D. N. MacLennan, and E. J. Simmonds. 1987.
 Calibration of acoustic instruments for fish density estimation: a practical guide.
 ICES Cooperative Research Reports, Int. Counc. Explor. Sea Coop. Res. Rep. No.144, 69 p.
- Honkalehto, T., W. Patton, S. de Blois and N. Williamson. 2002. Echo integration-trawl survey results for walleye pollock (Theragra chalcogramma) on the Bering Sea shelf and slope during summer 2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-126, 66 p.
- Ianelli, J. N., S. Barbeaux, G. Walters, T. Honkalehto and N. Williamson. 2004. Eastern Bering Sea walleye pollock stock assessment. *In* Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, 605 W. 4th Ave., STE 306, Anchorage, AK 99501-2252, section 1:1-90.
- MacLennan, D.N., P. Fernandes, and J. Dalen. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59: 365-369.
- Petitgas, P. 1993. Geostatistics for fish stock assessments: a review and an acoustic application. ICES J. Mar. Sci. 50: 285-298.

- Simrad. 2003. Simrad ER60 scientific echo sounder instruction manual Base Version Rev.A. Simrad Subsea A/S, Strandpromenenaden 50, Box 111, N-3191 Horten, Norway.
- Traynor, J. J. 1996. Target strength measurements of walleye pollock (*Theragra chalcogramma*) and Pacific whiting (*Merluccius productus*). ICES J. Mar. Sci. 53: 253-258.
- Williamson, N., and J. Traynor. 1996. Application of a one-dimensional geostatistical procedure to fisheries acoustic surveys of Alaskan pollock. ICES J. Mar. Sci. 53: 423-428.

SCIENTIFIC PERSONNEL

Leg 1 (5 June-3 July)

Name	Position	Organization	<u>Nation</u>
Neal Williamson	Chief Scientist	MACE	USA
Sarah Stienessen	Fishery Biologist	MACE	USA
Scott Furnish	Info. Tech. Specialist	MACE	USA
Tyler Yasenak	Fishery Biologist	MACE	USA
Robert L Self	Fishery Biologist	MACE	USA
Alexander Nikolayev	Acoustician	TINRO	Russia
Mikhail Stepanenko	Fishery Biologist	TINRO	Russia
Sergey Popov	Acoustician	VNIRO	Russia
Suzanne Yin	Biologist	NMML	USA
Laura Morse	Biologist	NMML	USA
Liz Mitchell	Biologist	NMML	USA
	Leg 2 (5 July-1 August	*)	
Name	Leg 2 (5 July-1 August <u>Position</u>	*) <u>Organization</u>	<u>Nation</u>
<u>Name</u> Paul Walline*	Leg 2 (5 July-1 August <u>Position</u> Chief Scientist	*) <u>Organization</u> MACE	<u>Nation</u> USA
<u>Name</u> Paul Walline* Taina Honkalehto*	Leg 2 (5 July-1 August <u>Position</u> Chief Scientist Fishery Biologist	*) <u>Organization</u> MACE MACE	<u>Nation</u> USA USA
<u>Name</u> Paul Walline* Taina Honkalehto* Denise McKelvey*	Leg 2 (5 July-1 August <u>Position</u> Chief Scientist Fishery Biologist Fishery Biologist	*) <u>Organization</u> MACE MACE MACE	<u>Nation</u> USA USA USA
<u>Name</u> Paul Walline* Taina Honkalehto* Denise McKelvey* Mike Brown*	Leg 2 (5 July-1 August <u>Position</u> Chief Scientist Fishery Biologist Fishery Biologist Info. Tech. Specialist	*) <u>Organization</u> MACE MACE MACE MACE	<u>Nation</u> USA USA USA USA
<u>Name</u> Paul Walline* Taina Honkalehto* Denise McKelvey* Mike Brown* Tyler Yasenak*	Leg 2 (5 July-1 August <u>Position</u> Chief Scientist Fishery Biologist Fishery Biologist Info. Tech. Specialist Fishery Biologist	*) <u>Organization</u> MACE MACE MACE MACE MACE	<u>Nation</u> USA USA USA USA USA
Name Paul Walline* Taina Honkalehto* Denise McKelvey* Mike Brown* Tyler Yasenak* Kresimir Williams*	Leg 2 (5 July-1 August <u>Position</u> Chief Scientist Fishery Biologist Fishery Biologist Fishery Biologist Fishery Biologist	*) <u>Organization</u> MACE MACE MACE MACE MACE MACE MACE	Nation USA USA USA USA USA
Name Paul Walline* Taina Honkalehto* Denise McKelvey* Mike Brown* Tyler Yasenak* Kresimir Williams* Alexander Nikolayev*	Leg 2 (5 July-1 August <u>Position</u> Chief Scientist Fishery Biologist Fishery Biologist Info. Tech. Specialist Fishery Biologist Fishery Biologist Acoustician	*) <u>Organization</u> MACE MACE MACE MACE MACE MACE MACE TINRO	Nation USA USA USA USA USA USA Russia
Name Paul Walline* Taina Honkalehto* Denise McKelvey* Mike Brown* Tyler Yasenak* Kresimir Williams* Alexander Nikolayev* Mikhail Stepanenko*	Leg 2 (5 July-1 August Position Chief Scientist Fishery Biologist Fishery Biologist Fishery Biologist Fishery Biologist Acoustician Fishery Biologist	*) Organization MACE MACE MACE MACE MACE MACE TINRO TINRO	Nation USA USA USA USA USA USA Russia
Name Paul Walline* Taina Honkalehto* Denise McKelvey* Mike Brown* Tyler Yasenak* Kresimir Williams* Alexander Nikolayev* Mikhail Stepanenko* Alexander Glubokov	Leg 2 (5 July-1 August Position Chief Scientist Fishery Biologist Fishery Biologist Fishery Biologist Acoustician Fishery Biologist Fishery Biologist Fishery Biologist	*) Organization MACE MACE MACE MACE MACE MACE TINRO TINRO VNIRO	Nation USA USA USA USA USA USA Russia Russia

* Disembarked the vessel 29-July.

MACE - Midwater Assessment and Conservation Engineering Program, Alaska Fisheries Science Center, Seattle, WA

NMML - National Marine Mammal Laboratory, AFSC, Seattle WA

NOAA - National Oceanic and Atmospheric Administration, Seattle WA

TINRO - Pacific Research Institute of Fisheries and Oceanography, Vladivostok, Russia

VNIRO - Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia

Table 1.--Simrad EK500 38 kHz acoustic system settings during the summer 2004 echo integrationtrawl survey of the Bering Sea shelf, and results from standard sphere acoustic system calibrations conducted before, during, and after the survey.

			Calibrations	
	Survey	6-Jun	2-Jul	29-Jul
	System Settings	Three Saint's Bay,	Captains Bay,	Captains Bay,
		Alaska	Alaska	Alaska
Echosounder:	Simrad EK 500			
Transducer:	ES38B			
Frequency (kHz):	38			
Transducer depth (m):	9.15			
Absorption coefficient (dB/km):	10			
Pulse length (ms):	1.0 (medium)			
Band width (kHz):	3.8 (Wide)			
Transmitted power (W):	2000			
Angle sensitivity:	21.9			
2-Way beam angle (dB):	-20.8			
TS transducer gain (dB):	25.5	25.5	25.5	25.4
Sv transducer gain (dB):	25.3	25.3	25.3	25.3
3 dB beamwidth (deg)				
Along:	7.10	7.13	6.86	6.83
Athwart:	6.80	6.93	6.83	6.84
Angle offset (deg)				
Along:	0.00	-0.35	-0.34	-0.34
Athwart:	0.00	0.06	0.04	0.05
Range (m):	500			
Post-processing Sv threshold (dB):	-70			
Standard sphere TS (dB)		-42.25	-42.25	-42.25
Sphere range from transducer (m):		21.6	21.0	20.9
Water temp (°C):				
at transducer:		7.7	7.0	8.7
at sphere:		7.1	5.3	5.7

Note: Gain and Beam pattern terms are defined in the "Operator Manual for Simrad EK500 Scientific Echo Sounder (1993)" available from Simrad Subsea A/S, Strandpromenaden 50, P.O. Box 111, N-3191 Horten, Norway.

Haul	¹ Area	² Gear	Date	Start time	Transect	Duration	³ Start P	osition	Depth (<u>m)</u>	Temp. (de	<u>g C)</u>	⁴ Polloc	k catch	Other catch
			(GMT)	(GMT)		(min)	Latitude	Longitude	Foot-rope	Bottom	Head-rope	Surface	(kg)	number	(kg)
1	1	30	11-Jun	3:28	3	5	56.1302	-162.2342	72	76	4.0	7.7	167.4	154	470.3
2	1	626	11-Jun	8:05	3	30	56.0764	-162.2375	7	75	7.4	7.6	0.0	350	2.7
3	1	30	11-Jun	16:08	4	17	55.8987	-162.8298	79	82	3.4	7.3	2096.5	2231	259.5
4	1	626	11-Jun	23:02	4	19	56.8888	-162.7837	17	65	5.8	7.5	0.6	1006	3.4
5	1	317	12-Jun	23:37	6	12	55.5752	-164.0122	85	95	3.9	7.6	3725.9	5672	362.1
6	1	626	13-Jun	11:56	7	25	57.1346	-164.6080	40	69	2.3	7.6	0.0	0	0.4
7	1	317	13-Jun	21:55	7	25	56.0391	-164.5766	84	92	3.3	7.8	639.9	848	56.9
8	1	317	14-Jun	2:07	7	22	55.5814	-164.5922	87	101	4.5	8.2	1046.3	1385	549.7
9	1	317	14-Jun	8:21	7	7	55.1992	-164.5878	78	100	5.0	7.0	1408.9	1845	37.1
10	1	317	14-Jun	17:22	8	10	54.4794	-165.1530	46	110	5.7	6.2	0.0	3	4.3
11	1	317	14-Jun	22:11	8	23	54.8132	-165.1574	102	117	5.3	7.3	220.6	251	61.3
12	1	317	15-Jun	4:47	8	13	55.7947	-165.1877	27	103	7.7	8.8	891.2	1293	253.8
13	1	30	15-Jun	8:47	8	25	56.1070	-165.2002	12	95	7.6	8.8	0.0	0	20.1
14	1	317	15-Jun	12:43	8	52	56.0687	-165.1967	73	96	3.0	8.5	861.2	1293	26.1
15	1	317	16-Jun	12:20	9	9	54.9923	-165.7634	98	131	4.6	7.4	867.0	1216	3.0
16	1	626	17-Jun	2:35	9	9	54.2448	-166.1786	172	426	4.3	8.0	0.0	0	2.1
17	1	317	17-Jun	4:23	10	16	54.1950	-166.2175	137	271	4.6	6.8	189.8	205	5.6
18	1	317	17-Jun	22:22	10	9	55.8584	-166.3934	119	128	4.0	8.7	2483.1	3533	2.7
19	1	30	18-Jun	4:01	10	26	56.4513	-166.4285	97	100	3.7	8.8	575.7	883	64.8
20	1	30	18-Jun	8:28	10	32	56.8361	-166.4492	77	77	0.0	8.5	15.8	26	36.7
21	1	317	18-Jun	9:49	10	18	56.8976	-166.4529	44	75	3.1	8.3	4.0	3	10.9
22	1	317	18-Jun	13:21	10	21	56.9926	-166.4378	59	74	3.0	8.1	7.3	8	11.0
23	1	317	19-Jun	3:21	11	36	56.4593	-167.0402	98	107	3.7	8.1	1644.0	2678	16.0
24	1	317	19-Jun	17:17	11	10	55.6244	-166.9714	122	135	4.0	8.2	1299.9	1672	1.4
25	1	626	20-Jun	9:32	12	15	56.1411	-167.4951	30	136	5.4	8.1	0.0	0	2.5
26	1	317	20-Jun	17:55	12	11	56.5828	-167.6781	102	110	3.9	7.7	534.4	893	30.7
27	1	30	20-Jun	21:03	12	13	56.7892	-167.6959	93	93	3.4	7.7	230.8	300	5.4
28	1	30	21-Jun	2:14	12	26	57.3915	-167.7591	69	73	2.7	7.2	1069.2	1095	24.1
29	1	30	21-Jun	17:17	13	23	57.8394	-168.4278	71	71	2.9	6.6	1030.9	1239	454.6

Table 2.--Midwater and bottom trawl stations and catch data summary from the summer 2004 Bering Sea shelf walleye pollock echo integration-trawl survey, MF2004-08.

Haul	¹ Area	² Gear	Date	Start time	Transect	Duration	³ Start P	osition	Depth (<u>(m)</u>	Temp. (de	<u>g C)</u>	⁴ Polloc	k catch	Other catch
			(GMT)	(GMT)		(min)	Latitude	Longitude	Foot-rope	Bottom	Head-rope	Surface	(kg)	number	(kg)
30	1	317	22-Jun	1:32	13	13	56.7843	-168.3005	88	98	3.4	7.9	717.4	1170	24.0
31	1	317	22-Jun	6:35	13	20	56.5110	-168.2817	110	120	3.9	7.9	982.6	1576	62.7
32	1	317	23-Jun	3:01	14	24	56.3196	-168.8505	118	129	4.2	8.3	187.2	261	41.4
33	1	317	23-Jun	7:29	14	30	56.7725	-168.9098	82	96	3.6	7.9	1277.0	2316	23.0
34	1	305	23-Jun	10:12	14	33	56.6780	-168.8748	33	102	6.3	7.9	0.0	100	11.9
35	1	305	aborted	-	-	-	-	-	-	-	-	-	-	-	-
36	1	30	23-Jun	17:40	14	31	57.2721	-168.9677	74	74	3.8	7.6	231.2	341	94.3
37	1	305	24-Jun	9:15	15	15	57.9722	-169.6973	22	71	6.7	7.6	0.0	0	57.8
38	1	317	24-Jun	16:12	15	24	57.8347	-169.6634	62	70	3.3	7.6	884.4	1477	86.9
39	1	30	24-Jun	21:01	15	20	57.2764	-169.5844	62	62	3.4	6.8	1039.2	1576	95.8
40	1	30	25-Jun	19:15	16	30	56.0042	-169.9582	242	255	4.0	8.0	0.0	0	206.3
41	2	30	25-Jun	23:24	16	21	56.3405	-170.0661	108	110	4.1	8.2	445.3	584	8.4
42	2	317	26-Jun	2:57	16	33	56.7007	-170.1214	86	96	4.8	7.8	133.9	187	69.5
43	2	305	26-Jun	10:50	16	15	57.6475	-170.2732	19	74	7.5	8.2	0.0	0	96.7
44	2	317	28-Jun	9:31	17	18	58.4267	-171.0293	36	85	2.5	8.1	21.9	37	161.5
45	2	317	28-Jun	13:17	17	46	58.4686	-171.0585	76	85	0.8	7.6	384.3	837	19.0
46	2	317	28-Jun	17:53	17	21	58.0541	-170.9758	78	87	1.7	8.2	926.2	1939	33.8
47	2	305	28-Jun	19:06	17	16	58.0494	-170.9752	29	87	3.4	8.4	0.0	0	93.2
48	2	30	28-Jun	23:31	17	18	57.5637	-170.8890	82	85	3.9	8.6	7463.6	12457	284.6
49	2	317	29-Jun	7:37	17	20	57.3384	-170.8714	73	84	4.2	8.5	1928.8	3458	246.2
50	2	317	29-Jun	17:55	17	26	56.8475	-170.7661	95	104	4.5	8.6	181.6	269	106.5
51	2	317	29-Jun	22:30	17	39	56.5169	-170.7173	67	119	4.7	9.0	0.0	108	17.6
52	2	317	30-Jun	2:11	17	16	56.3771	-170.6958	111	119	4.4	8.6	494.5	710	18.9
⁵ 53	2	317	30-Jun	19:21	16	16	56.3282	-170.0191	103	108	4.2	8.7	2.2	4	-
⁵ 54	2	317	30-Jun	19:44	16	15	56.3505	-170.0029	102	106	4.6	8.5	4.3	6	0.3
55	2	317	aborted	-	-	-	-	-	-	-	-	-	-	-	-
⁵ 56	2	317	30-Jun	21:55	0	15	56.3514	-170.0582	105	108	4.3	8.5	3.4	6	11.4
⁵ 57	2	317	30-Jun	22:14	16	15	56.3711	-170.0475	107	107	4.5	8.5	4.8	5	0.2
58	1	317	1-Jul	4:52	0	1	56.4162	-169.0569	-	54	-	-	0.0	0	-
⁵ 59	1	317	2-Jul	9:02	0	15	54.3188	-165.9638	261	380	4.0	8.9	23.9	16	0.1
⁵ 60	1	317	2-Jul	9:26	0	15	54.3018	-165.9900	261	421	4.0	8.9	2.3	2	1.3
⁵ 61	1	317	2-Jul	15:57	0	15	54.2091	-166.1785	96	172	5.0	9.2	213.1	214	2.7
⁵ 62	1	317	2-Jul	16:21	0	15	54.2229	-166.1416	136	274	4.5	9.2	24.5	28	3.3
63	2	317	7-Jul	2:25	18	15	57.0502	-171.4052	99	107	4.1	9.3	287.5	471	34.0

Haul	¹ Area	² Gear	Date (GMT)	Start time (GMT)	Transect	Duration (min)	³ <u>Start P</u> Latitude	<u>osition</u> Longitude	Depth (Foot-rope	(<u>m)</u> Bottom	Temp. (de Head-rope	<u>g C)</u> Surface	⁴ Polloc (kg)	k catch number	Other catch (kg)
()	•	<u> </u>	(0)	(0)		()			- 000 10p0	100		0.1	((
64	2	317	7-Jul	7:00	18	19	57.6177	-171.5047	94	100	4.0	9.1	15/6.8	2581	55.2
65	2	626	7-Jul	9:26	18	10	57.6648	-171.5055	23	100	8.4	9.0	0.1	51	6.3
66	2	626	8-Jul	17:13	19	10	58.8692	-172.3918	15	100	9.0	9.4	0.2	850	24.5
67	2	317	8-Jul	19:43	19	30	58.6735	-172.3522	86	102	2.8	9.6	1000.5	1977	125.3
68	2	317	9-Jul	4:37	19	14	57.3396	-172.1289	92	109	4.2	9.1	286.3	438	54.5
69	2	317	9-Jul	17:47	19	20	56.5350	-171.9246	137	158	4.3	9.0	28.0	32	0.4
70	2	317	10-Jul	1:12	20	22	57.0029	-172.6471	110	122	4.1	9.3	292.0	391	20.6
71	2	317	10-Jul	5:53	20	20	57.5767	-172.7612	110	120	3.8	9.4	330.5	514	-
72	2	317	10-Jul	8:23	20	8	57.7629	-172.8130	98	117	3.8	9.4	1700.0	3125	-
³ 73	2	317	10-Jul	11:41	20	5	57.7821	-172.7144	100	115	3.8	9.4	95.7	187	-
³ 74	2	317	10-Jul	11:54	20	11	57.7855	-172.6918	72	115	4.3	9.4	6.3	12	-
75	2	317	10-Jul	17:04	20	5	58.0503	-172.8632	93	107	3.6	9.4	2223.3	4081	24.7
76	2	317	10-Jul	20:04	20	6	58.3222	-172.9253	90	109	3.3	9.6	651.9	1299	2.0
77	2	317	11-Jul	5:24	20	30	59.7127	-173.2107	102	94	-	9.4	543.0	900	290.2
78	2	626	11-Jul	7:04	20	15	59.7103	-173.2162	17	94	8.2	9.4	0.1	840	9.9
79	2	305	11-Jul	13:20	20	15	59.9901	-173.2944	12	76	7.3	9.3	0.0	33	67.9
80	2	30	11-Jul	23:27	21	25	61.0436	-174.2402	80	84	-	9.4	1083.7	1325	171.7
⁵ 81	2	317	12-Jul	13:05	21	15	59.1277	-174.0742	76	119	3.1	9.7	49.8	119	0.3
⁵ 82	2	317	12-Jul	13:27	21	15	59.1282	-174.1161	55	120	4.4	9.6	124.1	383	2.8
83	2	317	12-Jul	17:00	21	34	59.1719	-173.7691	97	113	3.1	10.1	4579.9	9363	40.1
84	2	317	12-Jul	21:28	21	18	58.8286	-173.6846	83	123	3.5	9.7	85.0	165	9.1
85	2	317	13-Jul	9:01	21	24	56.9047	-173.2316	144	145	4.1	9.2	33.6	59	-
86	2	317	13-Jul	10:32	21	45	56.9164	-173.2345	159	145	4.0	9.1	183.8	342	0.0
87	2	30	13-Jul	17:23	21	30	56.7034	-173.1862	141	141	4.0	9.1	913.3	906	19.5
88	2	317	14-Jul	6:52	22	10	58.9475	-174.3604	102	131	3.4	10.1	1412.0	2865	6.0
⁵ 89	2	317	14-Jul	10:01	0	36	59.1255	-174.4067	-	124	-	-	0.0	0	-
⁵ 90	2	317	14-Jul	10:49	0	27	59.0766	-174.3944	-	125	-	-	0.0	0	-
⁵ 91	2	317	14-Jul	12:28	22	15	59.0579	-174.3733	98	125	3.4	10.1	81.3	274	-
⁵ 92	2	317	14-Jul	14:25	22	15	59.0493	-174.3744	74	125	3.5	10.0	0.0	0	-
93	2	317	14-Jul	17:43	22	8	59.3219	-174.4580	80	121	3.0	10.4	573.2	1390	6.1
94	2	317	14-Jul	22:53	22	20	60.0654	-174.6558	86	108	2.4	10.6	4832.5	10861	119.5
95	2	317	15-Jul	5:10	22	35	60,9009	-174.8897	85	95	1.3	10.1	692.0	1085	270.6

Table 2.--Continued.

17

1 4010 2	1.	20		i		.	30					<i>a</i> `	4		
Haul	'Area	-Gear	Date (CMT)	Start time	Transect	Duration	<u>Start P</u>	osition	<u>Depth (</u>	<u>m)</u> Dottom	<u>Temp. (de</u>	<u>g C)</u> Surface	" <u>Polloc</u>	k catch	Other catch
			(GMT)	(GMT)		(min)	Latitude	Longitude	Foot-rope	Bottom	Head-rope	Surface	(kg)	number	(kg)
96	2	317	15-Jul	19:12	23	30	61.1707	-175.6514	81	101	1.4	10.2	1054.5	2338	180.5
97	2	305	15-Jul	21:07	23	16	61.1501	-175.6453	19	101	7.3	9.8	0.6	2435	27.9
98	2	317	16-Jul	2:27	23	31	60.4674	-175.4430	102	111	2.2	10.9	135.5	856	55.6
99	2	317	16-Jul	5:34	23	14	60.1681	-175.3553	81	115	2.6	10.7	1016.3	2783	24.8
100	2	317	16-Jul	6:48	23	22	60.2178	-175.3910	86	114	2.9	10.6	774.8	1795	36.5
⁵ 101	2	317	16-Jul	11:23	23	19	59.8630	-175.2575	98	122	2.9	10.5	664.8	1719	0.3
⁵ 102	2	317	16-Jul	13:25	23	5	59.8644	-175.2441	115	122	2.9	10.5	0.0	0	-
⁵ 103	2	317	16-Jul	13:41	23	11	59.8700	-175.2141	61	121	3.5	10.5	0.0	0	-
104	2	317	16-Jul	18:17	23	4	59.5685	-175.1879	99	131	3.0	10.4	187.3	525	6.0
105	2	317	17-Jul	7:43	24	28	58.7509	-175.5971	114	134	3.3	9.5	159.1	224	0.1
⁵ 106	2	317	17-Jul	10:35	24	15	58.7547	-175.5946	97	134	3.3	9.5	0.0	0	-
⁵ 107	2	317	17-Jul	10:52	24	26	58.7703	-175.6053	101	133	3.5	9.5	0.0	0	-
⁵ 108	2	317	17-Jul	13:12	24	19	58.7624	-175.6014	116	134	3.4	9.5	0.0	0	-
⁵ 109	2	317	17-Jul	13:36	24	11	58.7851	-175.6208	113	133	3.5	9.6	0.0	0	-
110	2	317	17-Jul	17:07	24	3	58.9832	-175.6567	110	133	2.8	10.0	501.8	1310	-
111	2	30	17-Jul	19:48	24	21	59.2128	-175.7241	135	137	2.5	10.3	180.8	206	28.7
112	2	317	17-Jul	23:26	24	11	59.5540	-175.8299	125	137	2.4	10.7	1235.7	3040	11.1
113	2	317	18-Jul	3:17	24	7	60.0443	-175.9710	122	129	2.7	10.7	1309.8	4206	12.6
114	2	317	18-Jul	6:52	24	20	60.3547	-176.0783	72	123	2.8	10.8	19.7	48	18.2
115	2	317	18-Jul	9:26	24	9	60.5981	-176.1420	62	120	4.2	11.0	764.7	1838	16.2
116	2	317	18-Jul	20:06	24	30	61.3545	-176.3610	93	108	1.5	10.6	1047.9	2608	38.9
117	2	305	18-Jul	22:04	24	15	61.3393	-176.4724	26	109	5.5	10.7	0.7	51090	72.8
118	2	305	18-Jul	23:19	24	10	61.3552	-176.3670	57	108	1.8	10.6	0.0	43	39.5
119	2	317	19-Jul	6:45	25	15	61.4081	-177.0888	105	119	1.8	10.8	995.7	3795	38.3
⁵ 120	2	317	19-Jul	11:45	25	16	61.1339	-176.9982	115	122	2.4	11.1	336.7	1772	-
⁵ 121	2	317	19-Jul	12:03	25	15	61.1299	-177.0358	134	123	2.1	11.1	149.1	711	-
⁵ 122	2	317	19-Jul	14:04	25	13	61.1337	-177.0094	112	122	2.2	11.1	239.3	983	0.2
⁵ 123	2	317	19-Jul	14:24	25	18	61.1301	-177.0512	68	123	2.7	11.1	6.7	19	-
124	2	317	19-Jul	18:26	25	7	60.8416	-176.9091	114	125	2.3	11.1	999.6	2678	-
125	2	317	19-Jul	23:39	25	7	60.2690	-176.7617	124	139	2.2	10.8	975.0	2503	1.7
126	2	30	20-Jul	4:44	25	20	59.6823	-176.5299	132	137	2.6	10.7	793.3	941	74.0
127	2	317	20-Jul	10:35	25	26	59.2457	-176.3777	114	138	2.9	10.4	350.5	569	0.6

Haul	¹ Area	² Gear	Date (GMT)	Start time (GMT)	Transect	Duration (min)	³ <u>Start P</u> Latitude	<u>osition</u> Longitude	<u>Depth (</u> Foot-rope	<u>m)</u> Bottom	<u>Temp. (de</u> Head-rope	<u>g C)</u> Surface	⁴ <u>Polloc</u> (kg)	<u>k catch</u> number	Other catch (kg)
128	2	317	20-Jul	13:10	25	3	59.3616	-176.4152	62	137	3.2	10.5	86.5	249	1.4
129	2	317	21-Jul	6:36	26	6	60.2251	-177.3764	102	139	2.1	10.9	959.9	3488	0.6
130	2	317	21-Jul	9:50	26	24	60.5722	-177.5003	51	155	4.1	11.1	53.1	207	6.5
⁵ 131	2	317	21-Jul	11:51	26	17	60.5562	-177.4932	136	155	1.7	11.0	221.1	1583	-
⁵ 132	2	317	21-Jul	12:18	26	31	60.5826	-177.5020	60	153	4.6	11.0	1.6	7	-
133	2	317	21-Jul	18:34	26	11	60.9257	-177.6295	121	136	1.8	11.2	840.1	2989	1.7
134	2	30	21-Jul	22:31	26	6	61.4083	-177.8026	131	134	2.0	11.4	9.5	44	1.9
135	2	317	21-Jul	23:26	26	6	61.4134	-177.8045	123	134	2.0	11.4	1413.5	8635	-
136	3	317	22-Jul	2:41	26	11	61.8156	-177.9553	118	129	1.9	11.2	755.5	3497	2.8
137	3	317	22-Jul	6:07	26	13	62.2031	-178.0996	85	111	1.1	11.0	3249.4	20807	42.6
138	3	317	22-Jul	20:12	27	12	61.8791	-178.7012	109	124	1.7	10.7	809.3	2791	24.4
139	3	30	22-Jul	23:16	27	14	61.6261	-178.5993	140	142	1.6	10.9	67.7	223	18.6
140	3	317	23-Jul	1:22	27	10	61.5798	-178.5824	137	146	1.7	11.0	73.6	245	-
⁵ 141	2	317	23-Jul	10:44	26	37	60.1284	-178.0237	106	146	3.1	10.8	735.7	2157	7.2
⁵ 142	2	317	23-Jul	11:23	26	25	60.1136	-177.9484	123	145	2.2	10.8	0.0	0	-
143	2	317	24-Jul	11:27	27	5	60.0391	-178.6673	95	139	3.3	10.7	14.1	58	1.2
144	2	317	24-Jul	12:58	28	13	60.0229	-178.6563	138	139	3.3	10.6	308.5	1195	1.8
145	3	317	25-Jul	0:32	28	10	61.6129	-179.3103	129	136	1.7	11.1	844.0	2921	7.4
146	3	317	25-Jul	3:48	28	24	61.9475	-179.4694	119	128	1.7	10.9	1164.0	3000	11.9
147	3	30	25-Jul	7:59	28	15	62.4257	-179.6552	108	107	1.6	10.6	2511.7	4166	346.3
148	3	317	25-Jul	10:32	28	15	62.3562	-179.6966	112	122	1.6	10.7	841.1	2075	1.6
149	3	317	25-Jul	15:08	29	10	62.2487	179.6700	89	96	3.1	10.1	135.0	346	8.6
150	3	317	25-Jul	18:24	29	6	62.0775	179.7490	101	109	1.9	10.4	1472.9	4488	69.1
151	3	317	26-Jul	22:43	29	12	61.3078	-179.8870	143	150	1.4	11.3	75.9	317	6.5
152	3	317	27-Jul	1:24	29	9	61.0951	-179.8117	165	172	1.4	11.2	1366.5	5466	1.2
153	3	317	27-Jul	7:18	30	2	61.0069	179.5352	159	178	1.5	11.2	909.2	2690	0.5
154	3	317	27-Jul	11:23	30	8	61.0667	179.5053	140	162	1.4	11.1	511.0	1558	-

¹Area: 1 = U.S.-east of 170°W longitude, 2 = U.S.-west of 170°W longitude, 3 = Russia-Cape Navarin.

²Gear type: 317 = Aleutian wing trawl, 30 = 83/112 bottom trawl, 626 = Methot trawl, 305 = Marinovich trawl.

³Start position: (+) latitude = degrees N, (-) longitude = degrees W, and (+) longitude = degrees E.

⁴Young of the year pollock were caught in Methot and Marinovich trawls where number > 0 and kg = 0.0 (pollock weighed less than 0.05 kg).

⁵Experimental trawl using a Multiple Opening-Closing (MOC) codend.

Table 2 -- Continued

Table 3.--Catch by species from 87^l of 117 Aleutian Wing trawl hauls conducted during the summer 2004 pollock echo integration-trawl survey of the Bering Sea Shelf, MF2004-08.

		Weigh	nt	
Common name	Scientific name	(kg)	(%)	Number
walleye pollock	Theragra chalcogramma	71,472.6	94.6	175,919
jellyfish	Cnidaria	3,535.5	4.7	3,635
Pacific herring	Clupea pallasi	171.6	0.2	667
chum salmon	Oncorhynchus keta	150.5	0.2	62
Pacific sleeper shark	Somniosus pacificus	90.1	0.1	4
Pacific cod	Gadus macrocephalus	22.2	< 0.1	6
smooth lumpsucker	Aptocyclus ventricosus	18.7	< 0.1	8
lumpsucker	Cyclopteninae	11.2	< 0.1	5
flathead sole	Hippoglossoides elassodon	10.0	< 0.1	25
rock sole sp. ²	Lepidopsetta sp.	6.2	< 0.1	17
longnose lancetfish	Alepisaurus ferox	5.6	< 0.1	1
chinook salmon	Oncorhynchus tshawytscha	4.7	< 0.1	1
Atka mackerel	Pleurogrammus monopterygius	3.5	< 0.1	4
arrowtooth flounder	Atheresthes stomias	3.3	< 0.1	4
prowfish	Zaprora silenus	2.0	< 0.1	3
Bering wolffish	Anarhichas orientalis	1.6	< 0.1	1
yellowfin sole	Limanda aspera	1.4	< 0.1	3
lamprey	Lampetra sp.	1.3	< 0.1	5
magistrate armhook squid	Berryteuthis magister	0.5	< 0.1	1
eulachon	Thaleichthys pacificus	0.4	< 0.1	9
sturgeon poacher	Podothecus acipenserinus	< 0.1	< 0.1	1
shrimp	Pandalus sp.	< 0.1	< 0.1	2
squid	Teuthoidea	<0.1	<0.1	1
Totals		75,512.9		180,384

¹ Data from experimental and aborted trawl hauls were not used for catch composition.

² Within the rock sole species, one was a southern rock sole (*Lepidopsetta bilineata*) and three were northern rock sole (*Lepidopsetta polyxystra*).

Table 4.--Catch by species from 20, 83/112 bottom trawl hauls conducted during the summer2004 pollock echo integration-trawl survey of the Bering Sea shelf, MF2004-08.

		Weig	ht	
Common name	Scientific name	(kg)	(%)	Number
walleye pollock	Theragra chalcogramma	19,925.6	88.1	28,697
jellyfish sp.	Cnidaria	698.9	3.1	839
Pacific cod	Gadus macrocephalus	425.1	1.9	153
flathead sole	Hippoglossoides elassodon	232.2	1.0	600
Pacific ocean perch	Sebastes alutus	206.3	0.9	235
¹ rock sole sp.	Lepidopsetta sp.	188.9	0.8	544
yellowfin sole	Limanda aspera	173.3	0.8	494
Pacific sea lemon	Anisodoris nobilis	172.6	0.8	481
sponge sp.	Porifera	113.8	0.5	1
arrowtooth flounder	Atheresthes stomias	103.6	0.5	207
starfish sp.	Asteroidea	58.5	0.3	467
Alaska plaice	Pleuronectes quadrituberculatus	42.6	0.2	41
Tanner crab sp.	Chionoecetes sp.	38.3	0.2	187
hermit crab sp.	Paguridae	34.5	0.2	563
snail sp.	Gastropoda	30.0	0.1	257
sea anemone sp.	Actiniaria	26.4	0.1	57
Greenland turbot	Reinhardtius hippoglossoides	16.8	0.1	5
blue king crab	Paralithodes platypus	16.7	0.1	25
arrowtooth flounder	Atheresthes stomias	9.0	< 0.1	10
chum salmon	Oncorhynchus keta	8.1	< 0.1	3
shrimp sp.	Decapoda	8.0	< 0.1	2,478
Alaska skate	Bathyraja parmifera	7.8	< 0.1	1
longnose skate	Raja rhina	6.5	< 0.1	1
yellow Irish lord	Hemilepidotus jordani	6.4	< 0.1	9
roughshoulder skate	Raja badia	6.0	< 0.1	5
whelk sp.	Buccinidae	5.8	< 0.1	112
basketstar	Gorgonocephalus eucnemis	5.7	< 0.1	16
spinyhead sculpin	Dasycottus setiger	5.2	< 0.1	1
bigmouth sculpin	Hemitripterus bolini	4.4	< 0.1	1
threaded sculpin	Gymnocanthus pistilliger	3.8	< 0.1	1
red king crab	Paralithodes camtschaticus	3.6	< 0.1	2
Pacific staghorn sculpin	Leptocottus armatus	3.5	< 0.1	2
Pacific herring	Clupea pallasi	3.2	< 0.1	16
great sculpin	Myoxocephalus polyacanthocephalus	2.6	< 0.1	3
sculpin sp.	Cottidae	2.5	< 0.1	4
Pacific halibut	Hippoglossus stenolepis	1.9	< 0.1	5
wattled eelpout	Lycodes palearis	1.8	< 0.1	21
purple-orange sea star	Asterias amurensis	1.7	< 0.1	10
Pacific herring	Clupea pallasi	1.7	< 0.1	7
sea urchin sp.	Echinacea	1.5	< 0.1	5

Table 4.--Continued.

		Weig	ht	
Common name	Scientific name	(kg)	(%)	Number
eelpout sp.	Zoarcidae	1.4	< 0.1	14
Kamchatka flounder	Atheresthes evermanni	1.3	< 0.1	2
Pribilof whelk	Neptunea pribiloffensis	1.3	< 0.1	8
sea potato	Styela rustica	1.1	< 0.1	18
big skate	Raja binoculata	1.1	< 0.1	1
tunicate sp.	Ascidiacea	0.9	< 0.1	6
Kamchatka flounder	Atheresthes evermanni	0.6	< 0.1	2
snow crab	Chionoecetes opilio	0.6	< 0.1	3
spinyhead sculpin	Dasycottus setiger	0.4	< 0.1	1
sturgeon poacher	Podothecus acipenserinus	0.4	< 0.1	6
scissortail sculpin	Triglops forficata	0.3	< 0.1	11
scallop sp.	Pectinidae	0.3	< 0.1	1
sea mouse sp.	Aphroditidae	0.2	< 0.1	4
Arctic shanny	Stichaeus punctatus	0.2	< 0.1	1
daubed shanny	Lumpenus maculatus	0.1	< 0.1	7
eulachon	Thaleichthys pacificus	0.1	< 0.1	2
thorny sculpin	Icelus spiniger	0.1	< 0.1	4
salmon snailfish	Careproctus rastrinus	0.1	< 0.1	1
spider crab sp.	Majidae	0.1	< 0.1	3
Pacific lyre crab	Hyas lyratus	0.1	< 0.1	2
spectacled sculpin	Triglops scepticus	0.1	< 0.1	2
crab sp.	Decapoda	0.1	< 0.1	2
thorny sculpin	Icelus spiniger	0.1	< 0.1	3
longnose poacher	Leptagonus leptorhynchus	< 0.1	<0.1	1
brittlestarfish sp.	Ophiuroidea	< 0.1	< 0.1	2
lyre crab sp.	Hyas sp.	<0.1	< 0.1	1
Totals		22,615.8		36,674

¹ Within the rock sole species, 79 were northern rock sole (*Lepidopsetta polyxystra*).

Table 5.--Catch by species from nine Marinovich pelagic trawl hauls conducted during the summer 2004 pollock echo integration-trawl survey of the Bering Sea shelf, MF2004-08.

		Weigh	t			
Common name	Scientific name	(kg)	(%)	Number		
chrysaora jellyfish	Chrysaora sp.	424.2	90.4	543		
jellyfish sp.	Scyphozoa	28.8	6.1	35		
aequorea jellyfish	Aequorea sp.	14.8	3.2	44		
walleye pollock	Theragra chalcogramma	1.3	0.3	53,701		
euphausiid sp.	Euphausiacea	< 0.1	<0.1	110		
squid sp.	Teuthoida	< 0.1	< 0.1	3		
flatfish larvae	Pleuronectidae	< 0.1	< 0.1	4		
isopod sp.	Isopoda	<0.1	< 0.1	1		
Totals		469.1		54,441		

Table 6.--Catch by species from eight Methot pelagic trawl hauls conducted during the summer 2004 pollock echo integration-trawl survey of the Bering Sea shelf, MF2004-08.

		Weigh	t	
Common name	Scientific name	(kg)	(%)	Number
chrysaora jellyfish	Chrysaora sp.	35.8	68.2	46
jellyfish sp.	Scyphozoa	7.3	13.8	23
euphausiid sp.	Euphausiacea	3.7	7.0	44,797
aequorea jellyfish	Aequorea sp.	2.8	5.4	9
amphipod sp.	Amphipoda	2.0	3.8	2
walleye pollock	Theragra chalcogramma	0.9	1.7	3,097
sculpin sp.	Cottidae	< 0.1	<0.1	1
prowfish	Zaprora silenus	< 0.1	< 0.1	3
Pacific sand lance	Ammodytes hexapterus	< 0.1	<0.1	2
isopod sp.	Isopoda	< 0.1	<0.1	4
flatfish larvae	Pleuronectidae	< 0.1	<0.1	15
fish sp.	Pisces	< 0.1	<0.1	1
eulachon	Thaleichthys pacificus	<0.1	<0.1	1
Totals		52.5		48,001

Haul	Length	Maturity	Weight	Age	Stomach	YOY	TINRO collection ¹	VNIRO collection ²
1	154	38	37	38	_	_	_	_
2	-	-	-	-	-	50	_	-
3	394	54	54	54	-	-	_	-
4	-	-	-	-	-	50	_	-
5	411	44	44	44	-	-	50	_
6	-	-	-	-	-	-	_	-
7	416	42	42	42	-	-	50	-
8	341	42	42	42	-	-	-	-
9	371	36	36	36	-	-	-	-
10	-	-	-	-	-	-	-	-
11	251	50	50	50	-	-	-	-
12	383	36	36	36	-	-	50	-
13	-	-	-	-	-	-	-	-
14	424	49	49	49	-	-	-	-
15	335	39	39	39	-	-	-	-
16	-	-	-	-	-	-	-	-
17	205	37	37	37	-	-	50	-
18	451	60	60	60	-	-	50	50
19	373	35	35	35	-	-	-	-
20	26	-	-	-	-	-	-	-
21	3	-	-	-	-	-	-	-
22	8	8	8	8	-	-	-	-
23	330	35	35	35	-	-	50	50
24	467	63	63	63	-	-	-	50
25	-	-	-	-	-	-	-	-
26	359	64	64	64	-	-	-	50
27	300	42	42	42	-	-	-	-
28	240	33	33	33	-	-	50	-
29	347	53	53	53	-	-	-	50
30	361	37	3/	37	-	-	-	-
31	310	35 28	35 28	33 29	-	-	-	-
32 22	201	38 25	38 25	38 25	-	-	-	-
33 24	284	55	55	55	-	-	-	-
34	-	-	-	-	-	-	-	-
35	338	<u>-</u> 52	<u>-</u> 52	- 52	-	-	-	-
37	-	-	-	-	-	_	-	_
38	346	52	52	52	-	_	-	50
39	392	43	43	43	_	_	50	-
40	-	-	-	-	-	_	-	-
41	380	38	38	38	_	_	50	21
42	187	35	35	35	_	_	-	
43		-	-	-	-	_	-	_
44	37	37	37	37	-	-	-	-

Table 7.--Numbers of walleye pollock biological samples collected during the summer 2004 pollock echo integration-trawl survey of the Bering Sea shelf, MF2004-08.

Table 7	Continued.
---------	------------

Haul	Length	Maturity	Weight	Age	Stomach	YOY	TINRO collection ¹	VNIRO collection ²
45	414	44	44	44	-	_	-	71
46	377	66	66	66	-	-	-	-
47	_	-	-	-	-	-	-	-
48	337	35	-	35	-	-	50	-
49	329	36	36	36	-	-	-	-
50	269	48	48	48	-	-	-	-
51		-	-	-	-	51	-	-
52	322	42	42	42	-	_	-	-
53	4	-	-	-	-	-	-	-
54	6	-	-	-	-	-	-	-
55	_	-	-	-	-	-	-	-
56	6	-	-	-	-	-	-	-
57	5	-	-	-	-	_	-	_
58	-	-	-	-	-	-	-	-
59	16	-	-	-	-	-	-	-
60	2	-	-	-	-	-	-	-
61	214	-	-	-	-	-	-	-
62	28	-	-	-	-	_	-	-
63	269	40	40	40	_	-	50	30
64	285	44	44	44	_	-	_	_
65	_	_	-	_	_	49	_	_
66	-	_	-	_	_	47	_	_
67	399	58	58	58	_	_	50	50
68	310	46	46	46	-	-	-	_
69	32	32	32	32	_	-	_	_
70	277	40	40	40	_	-	_	30
71	514	39	39	39	_	-	_	_
72	314	30	30	30	-	-	-	_
73	187	63	63	63	-	-	-	_
74	12	12	12	12	-	-	-	_
75	385	50	50	50	-	-	50	50
76	394	41	41	41	-	-	-	-
77	299	38	38	38	-	-	-	-
78	-	-	-	-	-	63	-	-
79	-	-	-	-	-	32	-	-
80	284	38	38	38	-	-	50	73
81	119	-	-	-	-	-	-	-
82	383	-	-	-	-	-	-	-
83	376	47	47	47	-	-	-	50
84	165	-	-	-	-	-	-	-
85	59	-	-	-	-	-	-	-
86	310	35	35	35	-	-	-	-
87	340	43	43	43	-	-	-	50
88	320	35	35	35	-	-	-	-
89	-	-	-	-	-	-	-	-
90	-	-	-	-	-	-	-	-

Table 7	-Continued.

Haul	Length	Maturity	Weight	Age	Stomach	YOY	TINRO collection ¹	VNIRO collection ²
91	175	-	-	_	_	_	-	_
92	-	-	-	-	-	-	-	-
93	421	53	53	53	_	-	-	50
94	508	65	65	65	-	-	50	-
95	300	29	29	29	_	-	-	_
96	363	45	45	45	_	-	50	40
97	-	-	-	-	_	124	-	-
98	199	27	27	27	_	-	50	_
99	441	41	41	41	-	-	-	-
100	383	25	25	25	-	-	-	-
101	273	36	36	36	-	-	-	-
102	-	-	-	-	-	-	-	-
103	-	-	-	-	-	_	-	-
104	525	57	57	57	-	_	-	-
105	224	22	22	22	-	_	-	-
106				-	-	_	-	-
107	-	-	-	-	-	_	-	-
108	-	-	-	-	-	_	-	-
109	_	_	_	_	_	-	_	_
110	407	29	29	29	-	_	-	19
111	140	29	29	29	-	_	-	43
112	397	29	29	29	_	-	50	_
113	448	28	28	28	-	-	_	-
114	48	-	-	-	-	-	-	-
115	316	24	24	24	-	-	-	-
116	382	28	28	28	-	-	-	40
117	-	-	-	-	-	115	-	-
118	-	-	-	-	-	44	-	-
119	388	57	57	57	-	-	-	-
120								
121	278	-	-	-	-	-	-	-
122	605	-	-	-	-	-	-	-
123	19	-	-	-	-	-	-	-
124	393	29	29	29	-	-	-	50
125	387	29	29	29	-	-	50	-
126	377	20	20	20	-	-	-	-
127	292	-	-	-	-	-	-	-
128	249	21	21	21	-	-	-	-
129	392	64	64	64	-	-	-	-
130	207	32	32	32	-	-	-	-
131	346	40	40	40	-	-	-	-
132	7	-	-	-	-	-	50	-
133	551	38	38	38	-	-	-	37
134	44	-	-	-	-	-	-	11
135	841	55	55	55	44	-	-	35
136	567	41	41	41	20	-	-	_

							TINRO	VNIRO
Haul	Length	Maturity	Weight	Age	Stomach	YOY	collection ¹	collection ²
137	433	40	40	40	20	-	-	-
138	535	48	48	48	19	-	50	43
139	223	-	-	-	-	-	-	7
140	245	30	30	30	5	-	-	-
141	349	-	-	-	-	-	-	-
142	-	-	-	-	-	-	-	-
143	58	-	-	-	-	-	-	-
144	354	35	35	35	-	-	-	-
145	508	32	32	32	24	-	50	39
146	350	26	26	26	25	-	50	-
147	525	29	29	29	24	-	-	-
148	308	23	23	23	23	-	-	-
149	346	30	30	30	17	-	-	-
150	457	36	36	36	18	-	-	50
151	317	36	36	36	21	-	-	-
152	451	35	35	35	25	-	50	28
153	312	25	25	25	23	-	-	30
154	316	30	30	30	-	-	-	-
otals	35,827	3,712	3,676	3,787	308	625	1,200	1,247

Table 7.--Continued.

¹ TINRO Center biological sampling includes length, weight, sex, maturity, otolith and stomach content sampling.

² VNIRO Institute biological sampling includes length, weight, sex, maturity, stomach content, liver weight, gonad weight, spleen weight, heart weight, and otolith collection

Table 8.--Abundance of pollock by area from summer echo integration-trawl surveys on the U.S. EEZ portion of the Bering Sea shelf, 1994-2004. Data are estimated pollock biomass between near surface and 3 m off bottom. Relative estimation error for the acoustic data is indicated.

			Biomass (million metric	tons, top)		Relative estimation	
Date		Area	and per	cent of total (b	ottom)	Total Biomass		
		$(nmi)^2$	SCA	E170-SCA	W170	(million metric tons)	error	
Summer	9 Jul-19 Aug	78,251	0.312	0.399	2.18	2.89	0.047	
1994			10.8	13.8	75.4			
Summer	20 Jul-30 Aug	93,810	0.215	0.269	1.83	2.31	0.039	
1996			9.3	11.7	79.0			
Summer	17 Jul 4 Sept	102 770	0.246	0.527	1.82	2 50	0.037	
1997	17 Jul-4 Sept	102,770	9.5	20.3	70.2	2.39	0.037	
Summer	7 Jun-5 Aug	103,670	0.299	0.579	2.41	3.29	0.055	
1999			9.1	17.6	73.2			
Summer	7 Jun-2 Aug	106.140	0.393	0.498	2.16	3.05	0.032	
2000		, -	12.9	16.3	70.8			
Summer	4 Jun -30 Jul	99.526	0.647	0.797	2.18	3.62	0.031	
2002			17.9	22.0	60.1			
Summer	4 Jun -29 Jul	99,659	0.498	0.516	2.29	3.31	0.037	
2004		,	15.1	15.6	69.3			
			SCA = Sea	lion Conservati	on Area			

E170 - SCA = East of 170°W minus SCA

W170 = West of $170 \,^{\circ}$ W

Table 9.--Estimated length composition (numbers in millions, and biomass in metric tons) of pollock between near surface and 3 m off bottom from U.S. Bering Sea shelf echo integration-trawl surveys, 1994-2004. The 1999 estimates exclude fish from additional sampling in the "horseshoe area" between Unimak and 167°W.

Length	199	4	199	6	199	7	199	9 🗆	200	0	200	2	2004 🗆	
cm	numbers	biomass	numbers	biomass	numbers	biomass	numbers	biomass	numbers	biomass	numbers	biomass	numbers	biomass
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0.03	<1	0	0	0	0
9	0	0	0	0	0	0	0.01	<1	0.03	<1	0	0	0	0
10	0	0	0	0	2.04	14	0.12	1	0.76	8	0.01	0	0.24	2
11	0.40	4	0	0	0.19	2	4.78	59	2.30	30	0.77	9	0.20	2
12	5.44	71	0.47	6	30.13	394	14.43	227	5.50	88	4.70	75	2.56	30
13	44.79	744	5.44	92	238.10	4,148	22.71	445	19.26	370	21.36	428	2.38	36
14	94.23	1,937	38.20	804	1,416.21	31,282	22.35	538	36.70	859	100.48	2,488	4.08	81
15	179.82	4,520	131.29	3,384	2,949.25	81,544	16.20	472	56.69	1,613	194.98	5,841	1.84	48
16	166.05	5,040	227.77	7,098	3,364.00	111,182	5.20	181	79.57	2,713	178.72	6,393	1.80	57
17	105.16	3,817	317.31	11,818	2,207.83	84,460	5.20	214	50.81	2,055	99.74	4,231	1.76	67
18	129.71	5,553	215.26	9,485	1,309.13	58,223	12.92	623	22.39	1,064	33.47	1,664	1.12	50
19	212.54	10,655	115.39	5,960	569.51	28,768	44.60	2,499	30.27	1,677	40.07	2,284	4.34	210
20	381.96	22,244	64.79	3,892	181.06	10,677	152.57	9,852	47.16	3,017	61.90	4,072	8.40	498
21	589.69	39,601	37.20	2,579	74.90	4,900	251.49	18,587	92.37	6,782	162.63	12,242	23.15	1,595
22	794.28	61,100	64.41	5,121	81.07	6,101	314.31	26,421	136.41	11,419	289.69	24,828	34.90	2,730
23	788.35	69,048	60.24	5,458	150.80	12,962	288.90	27,464	185.76	17,629	485.72	47,351	47.06	4,265
24	772.58	76,622	70.32	7,221	255.93	24,999	220.31	23,562	186.04	19,911	734.73	81,309	48.21	4,887
25	581.45	64,967	47.68	5,520	408.07	45,081	164.37	19,681	207.95	24,970	859.82	107,760	39.35	4,475
26	372.26	46,652	38.32	4,979	458.83	56,998	188.58	25,168	186.91	25,070	832.36	117,666	32.49	4,347
27	198.97	27,847	33.63	4,884	519.67	72,339	256.04	37,933	187.68	28,002	718.04	113,478	25.99	3,876
28	122.07	19,028	60.16	9,721	422.68	65,700	302.47	49,557	168.93	27,927	516.42	89,827	29.43	4,813
29	135.90	23,550	85.07	15,240	296.50	51,328	419.16	75,679	164.76	30,072	491.26	92,941	69.82	12,745
30	138.25	26,437	122.81	24,307	175.36	33,691	435.28	86,321	167.17	33,574	507.57	104,158	90.09	17,942
31	178.83	37,756	183.98	40,104	115.83	24,685	417.13	90,579	169.72	37,396	592.86	132,640	148.82	32,663
32	234.80	54,180	240.98	57,669	79.12	18,522	410.19	97,251	167.23	40,301	539.68	131,538	151.19	36,257
33	239.39	60,378	341.56	89,480	69.15	17,709	372.65	96,204	188.70	49,614	533.40	141,718	180.25	48,265
34	291.50	80,001	408.41	116,812	68.83	19,201	393.58	110,357	221.59	63,403	421.17	122,045	185.43	53,459
35	296.57	88,546	458.38	142,771	89.48	27,148	415.94	126,368	332.90	103,387	291.90	92,414	237.90	74,135
36	326.66	105,903	477.95	161,724	146.28	48,272	433.11	142,256	360.41	121,237	239.36	82,291	302.68	103,401
37	343.99	120,806	400.98	147,067	220.62	79,075	393.54	139,441	414.22	150,552	218.57	81,503	430.24	156,813
38	305.79	116,110	333.42	132,264	321.35	124,841	403.47	153,908	369.24	144,826	222.31	88,680	476.40	188,084
39	294.82	121,143	253.70	108,629	397.12	166,999	359.07	147,178	344.63	145,465	218.51	93,405	539.43	229,225
40	311.31	137,651	214.24	98,825	397.83	180,668	304.48	133,859	297.14	135,080	209.21	95,675	499.73	230,733

Length	19	94 🗆	19	96 🗆	19	97 🗆	19	99 🗆	20	00 🗆	20	02 🗆	20	04 🗆
cm	numbers	biomass												
41	271.09	129,335	168.18	83,422	350.37	171,750	243.06	114,415	331.55	161,884	200.43	98,165	511.11	252,339
42	289.53	149,294	154.99	82,523	292.97	154,670	240.38	120,957	316.41	165,982	179.46	94,168	475.59	253,443
43	273.09	152,526	149.27	85,177	222.05	125,886	265.33	142,492	331.24	185,961	186.32	104,975	453.93	261,967
44	243.93	147,017	133.46	81,478	172.49	104,750	321.32	183,897	302.44	181,482	185.26	110,994	388.07	239,860
45	256.58	166,444	117.96	76,937	125.08	81,320	328.57	200,114	290.08	185,345	197.15	125,772	339.54	222,131
46	216.09	149,720	103.48	71,999	93.20	64,736	304.97	197,389	249.82	169,854	183.59	124,740	247.30	171,216
47	177.93	131,130	98.39	72,930	74.75	55,323	238.84	164,067	235.52	170,024	182.87	132,267	196.13	142,845
48	148.15	115,921	94.29	74,352	59.37	46,750	182.91	133,183	176.81	135,575	168.36	129,623	150.84	115,709
49	73.11	60,566	83.67	70,102	45.51	38,100	122.90	94,742	143.24	116,332	154.43	126,481	113.57	92,215
50	66.74	58,531	79.87	71,016	40.23	35,728	88.16	71,872	106.27	91,389	133.48	115,778	78.29	67,512
51	33.15	30,462	72.52	68,346	33.10	31,145	60.42	52,026	78.54	71,352	117.74	108,641	64.53	58,478
52	30.35	29,789	60.21	60,080	31.72	31,560	42.15	38,303	48.15	46,186	91.92	89,753	56.33	53,394
53	18.15	18,463	50.89	53,710	29.59	31,087	33.02	31,630	35.75	36,163	88.43	91,552	41.08	41,489
54	15.68	16,856	38.44	42,859	23.91	26,500	26.90	27,130	22.09	23,496	62.98	68,832	30.20	31,998
55	18.57	21,296	25.63	30,163	19.77	23,075	16.14	17,129	16.58	18,562	44.34	51,122	19.12	21,285
56	11.05	13,207	14.07	17,456	14.58	17,914	9.26	10,327	12.58	14,788	40.16	48,961	14.43	17,136
57	9.52	11,943	7.65	9,998	10.61	13,712	9.40	11,013	8.92	11,004	24.16	30,986	8.83	11,453
58	4.85	6,368	7.68	10,573	8.60	11,671	5.68	6,984	6.41	8,300	18.77	25,335	5.83	7,517
59	2.96	4,167	3.02	4,365	5.98	8,530	3.24	4,174	5.13	6,962	11.26	15,953	6.16	8,825
60	3.47	5,001	4.71	7,163	3.45	5,155	3.04	4,104	1.87	2,656	10.58	15,550	4.00	6,038
61	6.63	10,199	2.88	4,591	4.58	7,172	2.40	3,394	2.30	3,421	7.11	11,003	2.89	4,574
62	1.39	2,285	1.79	2,998	1.55	2,550	2.12	3,135	1.72	2,679	3.92	6,415	1.95	3,214
63	0.71	1,196	0.28	498	2.01	3,448	0.62	953	1.57	2,551	2.18	3,683	2.07	3,585
64	0.49	844	0.59	1,084	0.47	843	0.57	925	0.98	1,660	1.74	3,109	0.08	139
65	1.86	3,382	0.85	1,637	0.81	1,531	0.93	1,562	0.64	1,122	1.74	3,223	0.30	562
66	0.77	1,467	0.35	704	0.32	617	1.42	2,497	0.70	1,296	1.16	2,202	0.55	1,097
67	0.97	1,929	0.66	1,386	1.27	2,622	0.48	876	0.03	52	0.27	505	0.35	717
68	1.46	3,021	0	0	0.19	413	0.30	567	0.27	551	0.17	352	0.19	406
69	0	0	0	0	0.59	1,351	0.29	585	0.59	1,244	0	0	0	0
70	1.93	4,349	0	0	0.10	230	0	0	0	0	0.43	945	0	0
71	0.49	1,142	0.11	267	0	0	< 0.01	3	0	0	0.01	33	0	0
72	0.97	2,380	0	0	0	0	0.11	238	0.15	351	0	0	0	0
73	0.49	1,239	0	0	0.05	126	0.16	362	0	0	0	0	0	0
74	0	0	0	0	0	0	0	0	0.14	362	0	0	0	0
75	0.49	1,340	0	0	0	0	0.04	90	0	0	0	0	0	0
76	0	0	0	0	0	0	0	0	0	0	0	0	0	0
77	0	0	0	0	0	0	0	0	0	0	0	0	0	0
78	0.49	1,503	0	0	0	0	0	0	0	0	0	0	0	0
79	0	0	0	0	0	0	0.39	1,118	0	0	0	0	0	0
80	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	12,815	2,886,223	8,521	2,310,728	20,683	2,592,178	11,629	3,285,138	9,630	3,048,697	14,124	3,622,072	6,835	3,306,937

Age	1994		1996	1996		1997			2000		2002		2004	2004*	
	num.	bio.	num.	bio.	num.	bio.	num.	bio.	num.	bio.	num.	bio.	num.	bio.	
1	610.2	17.1	972.3	36.7	12,360.0	417.8	111.9	3.3	257.9	8.1	634.8	21.2	25.7	1.0	
2	4,781.1	425.3	446.4	35.3	2,745.2	369.9	1,587.6	156.6	1,272.3	144.0	4,850.4	645.1	709.0	148.7	
3	1,336.0	312.4	520.4	118.7	386.2	99.5	3,597.0	847.4	1,184.9	284.6	3,295.1	843.7	977.9	320.2	
4	1,655.7	641.3	2,686.5	888.8	490.9	188.6	1,683.6	640.2	2,480.0	974.4	1,155.0	458.2	2898.4	1337.2	
5	1,898.1	1,067.2	820.7	396.0	1,921.5	921.0	582.6	271.7	899.7	488.6	507.2	286.0	1237.4	711.3	
6	296.1	187.2	509.3	341.8	384.4	235.0	273.9	164.3	243.9	156.0	756.8	514.5	444.2	310.3	
7	71.2	50.1	434.4	359.9	205.2	161.3	1,169.1	751.5	234.0	166.6	436.7	351.6	164.7	132.5	
8	65.2	55.3	84.9	72.5	142.5	139.5	400.2	278.9	725.1	540.8	91.4	85.6	180.6	145.1	
9	31.9	30.9	16.7	16.3	32.7	34.2	104.6	84.6	190.4	149.0	110.3	111.0	56.5	54.9	
10	23.2	26.4	6.3	6.6	3.9	4.4	66.9	62.5	84.7	76.3	205.4	212.5	36.0	34.0	
11	8.5	10.5	5.7	6.9	4.9	6.1	14.5	14.2	35.6	39.0	52.1	59.6	29.6	30.4	
12	19.3	27.9	12.1	17.1	2.0	3.4	6.5	7.2	18.1	16.7	17.9	19.7	49.4	52.0	
13	4.8	6.7	1.3	1.5	2.2	4.5	1.7	1.5	1.2	1.3	3.1	4.6	18.4	20.8	
14	5.7	7.7	4.8	7.0	2.3	3.8	0.0	0.0	1.4	2.6	5.9	8.5	3.5	4.4	
15	1.2	2.1	2.4	3.8	2.0	2.9	0.1	0.2	0.1	0.1	0.0	0.0	2.2	2.8	
16	7.9	12.5	0.5	0.9	0.0	0.0	0.1	0.2	0.3	0.3	0.0	0.0	0.5	0.8	
17	3.9	4.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
18	0.0	0.0	0.5	0.9	0.0	0.0	0.4	0.7	0.1	0.3	0.0	0.0	0.0	0.0	
19	0.7	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
20	0.0	0.0	0.0	0.0	0.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total	10,821	2,886	6,525	2,311	18,686	2,592	9,601	3,285	7,630	3,049	12,122	3,622	6,834	3,306	

Table 10.--Estimated age composition (numbers in millions and biomass in thousand metric tons) of pollock between near surfaceand 3 m off bottom from summer Bering Sea shelf echo integration-trawl surveys, 1994-2004.

* For 2004, age composition was estimated using age data from the 2004 Bering Sea bottom trawl survey.

31

Year	Region	Numbers (billions)	Biomass (million metric tons)	% Biomass	Survey Nation	Area (nmi2)
2004 🗆	US EEZ	7.95	4.03	91	US	99,659
	Russia EEZ (Cape Navarin)	1.55	0.40	9	US	7,870
	Total	9.51	4.43			
2002	US EEZ	13.81	4.53	98	US	99,526
	Russia EEZ (Cape Navarin)	0.75	0.08	2	Russia	32,270
	Total	14.56	4.61			
1994 🗆	US EEZ	12.60	3.72	85	US	78,250
	Russia EEZ (Cape Navarin)	2.77	0.65	15	US	18,460
	Total	15.37	4.37			

Table 11.--Estimated numbers and biomass of pollock from Bering Sea echo integration-trawl surveys in the U.S. and Cape Navarin area of Russia. Data are for pollock observed between near surface and 0.5 m off bottom.

Figure 1.--Transect lines with locations of midwater (Aleutian wing, Marinovich, and Methot trawls) and bottom trawl (83/112) hauls during the summer 2004, echo integration-trawl survey of pollock on the Bering Sea shelf. Transect numbers are outlined, and the Steller sea lion Conservation Area (SCA) is outlined.

Figure 2.--Transect lines with surface temperature contours (°C) from a) sea surface measurements and b) at a depth of 60 m during the summer 2004 echo integration-trawl survey of the Bering Sea Shelf.

Figure 3.--Mean weight at length for pollock sampled east and west of 170°W (including Cape Navarin, Russia) from the summer 2004 Bering Sea shelf echo integration-trawl survey. Vertical bars indicate one standard deviation.

35

Figure 4.--Maturity stage (by sex) for pollock greater than 29 cm observed in A), U.S.-east of 170° long., B), U.S.-west of 170° long., and in C), Russia-Cape Navarin, during the summer 2004, echo integration-trawl survey of pollock on the Bering Sea shelf, MF2004-08.

Figure 5.--Estimated pollock biomass (t) between 3 m off bottom and 12 m from the surface along tracklines surveyed during the summer 2004 echo integration-trawl survey of the Bering Sea shelf. Transect numbers are underlined, and the Steller sea lion Conservation Area (SCA) is outlined.

Figure 6.--Non-pollock backscatter (s_A, m²/nmi²) for the jellyfish - macrozooplankton - fish mixture between 3 m off bottom and 12 m from the surface along tracklines surveyed during the summer 2004 echo integration - trawl survey of the Bering Sea shelf. Transect numbers are outlined, and the Steller sea lion Conservation Area (SCA) is outlined.

38

Figure 7.--Echosign detected along transect 24 from the summer 2004 echo integration-trawl survey of the Bering Sea shelf.

39

Figure 8.--Estimated pollock length composition between 12 m from the surface and 3 m off bottom a) in the US Exclusive Economic Zone (EEZ), b) east and west of 170°W and in the Cape Navarin area, and c) east of 170°W, inside and outside the Steller sea lion conservation area (SCA) during the summer 2004 echo integration-trawl survey of the Bering Sea shelf. Estimated biomass in each subarea isindicated. Note Y-axes differ.

Figure 9.--Mean lengths-at-age of Bering Sea walleye pollock collected during the summer 1999, 2000, and 2002 echo integration-trawl surveys, and during the 2004 bottom trawl survey. Sample size for each age is greater than 5 fish.

Figure 10.--Estimated numbers of age 2 and 3 pollock (bars) from echo integration-trawl (EIT) surveys and stock assessment Model 1 (Ianelli et al. 2004); a) EIT age 2, b) EIT age 3, c) Model 1 age 2, and d) Model 1 age 3. Mean numbers for each age group are indicated (lines). EIT survey years between 1982 and 2004 are represented. Numbers at age for survey year 2004 were estimated using the 2004 bottom trawl survey ages.

Figure 11.--Pollock acoustic backscatter (s_A m²/nmi²) along tracklines from three echo integration-trawl surveys in the Cape Navarin area - a) 1994 U.S. survey (*Miller Freeman*), b) 2002 Russian survey (R/V *TINRO*) and c) 2004 U.S. survey (*Miller Freeman*).